Use este identificador para citar ou linkar para este item: http://carpedien.ien.gov.br:8080/handle/ien/2083
Tipo: article
Título: Fuzzy Inference System for Evaluating and Improving Nuclear Power Plant Operating Performance
Autor(es): GUIMARÃES, Antônio César F.
LAPA, Celso Marcelo Franklin
Resumo: This paper presents a fuzzy inference system (FIS) as an approach to estimate Nuclear Power Plant (NPP) performance indicators. The performance indicators for this study are the energy availability factor (EAF) and the planned (PUF) and unplanned unavailability factor (UUF). These indicators are obtained from a non analytical combination among the same operational parameters. Such parameters are, for example, environment impacts, industrial safety, radiological protection, safety indicators, scram rate, thermal efficiency, and fuel reliability. This approach uses the concept of a pure fuzzy logic system where the fuzzy rule base consists of a collection of fuzzy IF-THEN rules. The fuzzy inference engine uses these fuzzy IF-THEN rules to determine a mapping from fuzzy sets in the input universe of discourse to fuzzy sets in the output universe of discourse based on fuzzy logic principles. The results demonstrated the potencial of the fuzzy inference to generate a knowledge basis that correlate operations occurrences and NPP performance. The inference system became possible the development of the sensitivy studies, future operational condition previsions and may support the eventual corrections on operation of the plant.
Palavras-chave: Fuzzy
Nuclear power plant
knowledge
Idioma: eng
País: Brasil
Editor: Instituto de Engenharia Nuclear
Sigla da Instituição: IEN
Tipo de Acesso: restrictAccess
URI: http://carpedien.ien.gov.br:8080/handle/ien/2083
Data do documento: Jul-2003
Aparece nas coleções:Engenharia e Segurança de Reatores Nucleares - Artigos de Periódicos

Arquivos associados a este item:
Não existem arquivos associados a este item.


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.